Five minutes of theory

You can safely skip this section

Given a TLA+ specification, with all parameters fixed, our model checker performs the following steps:

  1. It automatically extracts symbolic transitions from the specification. This allows us to partition the action Next into a disjunction of simpler actions A_1, ..., A_n.

  2. Apalache translates operators Init and A_1, ..., A_n to SMT formulas. This allows us to explore bounded executions with an SMT solver (we are using Microsoft's Z3). For instance, a sequence of k steps s_0, s_1, ..., s_k, all of which execute action A_1, is encoded as a formula Run(k) that looks as follows:

[[Init(s_0)]] /\ [[A_1(s_0, s_1)]] /\ ... /\ [[A_1(s_(k-1), s_k)]]

To find an execution of length k that violates an invariant Inv, the tool adds the following constraint to the formula Run(k):

[[~Inv(s_0)]] \/ ... \/ [[~Inv(s_k)]]

Here, [[_]] is the translator from TLA+ to SMT. Importantly, the values for the states s_0, ..., s_k are not enumerated as in TLC, but have to be found by the SMT solver.

If you would like to learn more about theory behind Apalache, check the paper delivered at OOPSLA19.